
The 2008 Ruby GUI Survey
Background, Findings and Commentary

Alex Fenton (alex@pressure.to)
10 February 2009

mailto:alex@pressure.to

The 2008 Ruby GUI Survey / 2

1. Summary of Findings
 The survey received a total of 399 responses; 80% of these completed the whole survey.

Respondents were evenly split into those who'd never done GUI programming in Ruby, those
who had in the past but weren't doing so now, and those who were currently doing so.

 Most of those doing GUI development were working alone, either on “fun” projects or open-
source software. One in three was using GUI libraries to develop in-house company tools;
just under 10% were working on commercial GUI software.

 The Ruby GUI “scene” remains fragmented: the survey found at least a dozen separate GUI
libraries in current use. The most used toolkits were Shoes (21%), Ruby-GNOME2 (19%) and
wxRuby (16%).

 Of users naming a single preferred toolkit, Ruby-GNOME2 and Shoes were chosen by 26%,
wxRuby by 17% and RubyCocoa 11%; no other toolkit received more than 10%.

 There are striking differences between Japanese and Euro-American Ruby users. Among
Japanese Ruby developers, Ruby-GNOME2 is the preferred toolkit of a majority (56%),
whereas among Euro-Americans, it lies third behind Shoes and wxRuby in popularity.

 Preference for one or other of the two leading comprehensive toolkits (GNOME2 and Wx) is
not strongly predicted by the general importance attached to features of GUI libraries. This
suggests their capabilities and range of potential applications largely overlap.

 The emergence of new Ruby implementations and their associated GUI options has already
had an effect on usage. MacRuby/Cocoa and, to a lesser degree, JRuby/Swing are well used
and well regarded. MacRuby/Cocoa was the highest rated among all options for how well it
met users' GUI development requirements.

 Ruby-Tk received the worst rating for how well it meets users' GUI requirements, with a
modal rating of 'poor'. It was the only library for which fewer respondents said they planned
to use it in the future than are currently using it. Its continued inclusion in the standard
library is unjustified.

 Among those with an opinion, there's a 60/40 split against including any GUI library in the
Ruby standard distribution.

 The high degree of fragmentation has not served potential GUI developers well. Almost all
see Ruby as a viable GUI programming language, but the immaturity of the toolkits is the
commonest reason for not using Ruby for GUI work. The means of redistributing ruby GUI
apps to end users is another obstacle.

 The release of Ruby 1.9 addresses some perceived impediments to GUI development in Ruby,
such as improved speed, and, more importantly, the availability of system-level threading.
There is scope for the reference Ruby implementation to further improve Ruby as a platform
for desktop applications, for example, by offering bytecode loading.

The 2008 Ruby GUI Survey / 3

2. Overview
Section 3 provides some background to the survey, with general information about Ruby as a
language for GUI development. Section 4 describes the practical and general objectives of the
research. Section 5 describes how the survey was developed and administered. Section 6 gives a
profile of the sample of Ruby developers who responded to the survey, and Section 7 describes
where and why they are doing GUI development. Section 8 presents findings on GUI developers'
criteria for selecting a toolkit. Section 9 reports current patterns of usage and preference of the
different toolkits available; Section 10 tries to link stated general requirements to these selections of
particular libraries. Section 11 describes respondents' hopes for the future development of Ruby as a
langauge for GUI programming. The last section 12 offers some general conclusions and
commentary on the results.

3. Background: Ruby and GUI programming
Ruby is an object-oriented programming language. Until recently, its only usable implementation
was an open-source interpreter. As with interpreters for comparable languages such as Perl and
Python, ruby is a command-line tool in the Unix tradition. By default Ruby programs are not
interactive; those that are accept text inputs in a terminal, and are limited to using text to provide
feedback to users. Ruby programs can be developed in any editor; the standard interpreter ruby is
not closely integrated with any particular program development environment.

A number of libraries exist to enable Ruby to provide graphical user interaction (GUI). These libraries
enable a program to accept input and provide feedback using desktop computing interface elements
and conventions, such as buttons, text boxes and windows. The standard distribution of Ruby
includes the 'Tk' library to do this; a number of other libraries are provided by third parties. Most of
these are wrappers around toolkits written in C or C++, such as FxRuby, wxRuby, ruby-GNOME2 and
RubyQt; Shoes is a graphical library which includes some interactive elements, implemented for
Ruby alone. More recent alternate implementations of Ruby have their own GUI facilities provided by
toolkits associated with the environment, such as Cocoa for MacRuby and Swing for JRuby.

There is a substantial overlap between the libraries in terms of their capabilities; they all enable
display of interface elements, on-screen drawing, and handling of user interaction. There are also,
however, considerable differences between the libraries in their aims, supported platforms, size, API
style, range of widgets, aesthetics, licensing terms and supporting tools and documentation.

On discussion lists, Ruby users often seek advice on selecting a GUI toolkit. Many responses to these
requests amount to no more than a statement that “I use XXX toolkit and it works well for me”. Such
statements, it can be assumed, are both objectively true and well meant. They are little help however
in selecting a toolkit, because they say nothing about what specific requirements were met, or what
other options were considered. There is no “best” toolkit in abstract terms.

There have also been some attempts at systematic comparison of GUI libraries for Ruby, but these
face the difficulties of summarising a large, heterogeneous and evolving field; what follows probably
also applies to web framework comparisons. These efforts are limited to describing the superficial

The 2008 Ruby GUI Survey / 4

and general characteristics of different libraries in abstract, whereas in fact the usefulness of a
library is only really tested by trying to employ it to a specific end. Shortcomings may only become
apparent after a substantial amount of purposeful use of a library. Comparative summaries of GUI
libraries' features also become invalidated by the release of new library versions.

4. Objectives of the Study
The primary purpose of the research was to describe usage, preferences and trends in Ruby GUI
programming. A web-based quantitative survey was carried out in order to:

 provide current and potential Ruby GUI programmers with a picture of how well used and
well regarded the available options are;

 provide GUI toolkit developers with information on the priorities and requirements of Ruby
GUI programmers;

 provide ruby core developers with information on how they might best support the
advancement of ruby as an effective and popular language in this field.

The survey was intended firstly to guide potential new GUI programmers, although not to adjudicate
which is the “best” toolkit. The survey observed the outcomes of a reasonably large set of individual
programmers' work and play with Ruby as a GUI development language. Each had different
requirements, prior knowledge and expectations. By looking at the aggregate results in terms of
current usage of and preference for GUI libraries, we can say something about how well the toolkits
have each been able to meet user requirements overall. Potential new users might then start by
evaluating some of the more popular options, on the reasonable assumption that they're popular for
a reason.

On the second and third points, developers of toolkits and Ruby interpreters still mostly work on a
voluntary basis. For all, the limiting factor for improving the product is generally time. The choice to
work on one thing (for example, improving documentation) generally implies delaying another (for
example, adding more widgets or features). For them, having a broad summary of the relative
priorities of potential users may be a useful guide in choosing what to work on in their respective
projects.

Ruby GUI Libraries as a case study in open source development

The survey was also motivated by a broader interest in the limits of the open-source model of
development. A broader question is whether the Ruby GUI scene is a 'pathological' case in open-
source. Competition and diversity between products offering similar functions are generally held to
be an important positive element of open-source development. The effort wasted in developing
competing, overlapping products is offset over time by exchange of ideas and gradual consolidation
around technically better options.

Whilst by various metrics, Ruby's popularity has greatly increased in recent years, it remains a small
language relative to C, C++ and Java. It is an open question whether having a large number of
libraries seemingly offering similar features is an optimal outcome.

The 2008 Ruby GUI Survey / 5

For several reasons, developing a GUI library for Ruby is particularly time-consuming: the large
number of classes and methods often involved; the need to employ lower-level compiled languages;
the salience of cross-platform variation; the difficulty of automated testing; highly variable paths
through code; and the complexity of reconciling Ruby's GC-based memory management with that of
the base language (often C or C++) in long-running applications. Most or all of the GUI toolkits are
projects with only a small number of active developers, in some cases, only one. As projects,
therefore, they're of a scale where sustainability and development progress are at continued risk,
rather than where forking and reconciliation bring long-term improvements.

This report seeks to assess whether the current state is a desirable outcome in two ways. Firstly, it
asks users directly about their views of the toolkits and of GUI development in Ruby overall. It hopes
to assess whether end users value the diversity, or whether they find the existing options relatively
immature – implying that more directed efforts on a smaller number of libraries would have been
more in their interests.

Secondly, it considers whether the range of libraries available offers a rational set of choices. It could
be that there are important differences in features between the libraries, and the diversity arises
from the different toolkits occupying different niches. Users are making rational selections of tools
which best meet their requirements. The report attempts to assess this by looking at the links
between programmers' stated requirements and their preferences for particular libraries. If these are
strong, this would suggest important differentiation among the libraries; if weak, it would suggest
that the options are not that different, or that the costs to users of properly evaluating options are
too high.

5. The Survey Method
Given the intent to provide a coherent picture of overall usage and trends, an online survey was set
up to solicit the responses of Ruby programmers. A draft survey was designed using topics and
options drawing on previous online discussions on newsgroups and mailing lists. This draft survey
was circulated by email to individuals identified as being involved in development on various toolkits;
Ruby-GNOME2, Shoes, FxRuby, RubyQt, JRuby/Swing; the author is the lead developer of wxRuby.
Several responses were received and the survey modified accordingly.

A record of the survey instrument is available separately. It consisted of 28 items, mostly multiple
choice. Respondents could supply their own alternatives where appropriate, and overarching free
text comments were invited at the beginning and end of the survey. Questions that invited
respondents to rate each of a series of alternatives (such as rating how well different toolkits met
their requirements) were presented with the rateable items in random order. The survey was hosted
on SurveyMonkey, and responses were submitted between 19 November and 3 December 2008.

An open invitation to complete the survey was posted on the comp.lang.ruby newsgroup, which is
mirrored to the main English-language Ruby mailing list, ruby-talk, and to web-based forums. It was
also posted to Ruby Flow, a user-driven news syndicator. An email was sent to the same list of toolkit
developers, who were invited to forward the survey invitation to mailing lists dedicated to their
toolkit. A translated copy of the invitation was posted independently to the main Japanese-language

The 2008 Ruby GUI Survey / 6

mailing list. The invitation specifically invited responses from those who were not using Ruby for GUI
development, and a short form of the survey could be completed by those who had no experience of
GUI development.

6. Characteristics of the Sample
An inherent difficulty of online research of this sort is that the size and characteristics of the
population from which the sample is drawn is unknown. Therefore, it's impossible to assess exactly
how representative the sample is of, say, “all Ruby programmers” – even if that category could be
defined clearly enough to be usable. So we must rely on looking at the characteristics of the sample,
and seeing if it suggests any likely source of bias in the results. The survey appears to have
succeeded in getting responses from programmers with a range of Ruby and GUI experience, natural
language background and working environment. Over the two weeks, a total of 399 people
undertook the survey1. Of these, 319 (80%) completed all the questions.

Spoken Language

Users were invited to state their first language. English was unsurprisingly the largest category, but
nearly as many Japanese Ruby programmers completed the survey:

n %

English 108 35.0

Japanese 98 31.7

German 20 6.5

French 19 6.1

Polish 8 2.6

Spanish 8 2.6

Dutch 6 1.9

Italian 5 1.6

Russian 5 1.6

Chinese 4 1.3

Portuguese 4 1.3

Danish 4 1.3

All others 20 6.5

N/A 90

All respondents 399 100.0

Table 1 : “Which of the following languages is your first language?”

The survey attracted both veterans with substantial experience with Ruby, and those newer to the
language. The number with less than three years experience reflects Ruby's recent growth in
popularity.

1 SurveyMonkey reports 400 responses, but the data file contained only 399 rows. Most tables in the report are based on the cleaned data
file, so there are small discrepancies with the totals calculated by SurveyMonkey.

The 2008 Ruby GUI Survey / 7

n %

less than 6 months 27 6.8

6 months - 1 year 51 12.8

1 year - 2 years 90 22.6

2 years - 3 years 87 21.9

3 years - 5 years 65 16.3

more than 5 years 78 19.6

N/A 1

All respondents 399 100

Table 2 : “How long have you been programming in Ruby?”

GUI usage

A third of respondents were currently using Ruby for GUI development; a slightly smaller number
were not, but had some experience in the past. The remainder had never used Ruby for GUI
programming, and so completed the short form of the survey only.

n %

Yes, currently 135 33.8

Yes, but not now 115 28.8

No, never 149 37.3

All respondents 399 100.0

Table 3 : “Have you ever used Ruby for GUI programming? Do you currently use Ruby for
GUI programming?”

As might be expected, those with longer experience in the language generally were more likely to
have some experience of GUI programming in Ruby. Those with GUI experience were in a minority
among those with less than year's experience; more than 4 in 5 of those with over five years
knowledge of Ruby had at least tried GUI development.

The range of uses to which Ruby was being put by respondents ranged widely. 70% of all
respondents were using Ruby for web development, 66% for 'systems tools'; write-in answers
included “UDP server”, “games”, “testing”, “exploratory programming”, “accounting”, “data
munging”, “security tools”, “windows automation”, “music”, “middleware” and “everyday chores”.

7. Context of Ruby GUI Programming
Before turning to which GUI libraries developers are using, it's worth looking at where and for what
purposes they're using them. The survey requested several pieces of information about development
environments, tools as well as the social and economic context of GUI development. The table below
shows the different situations in which GUI programmers were using Ruby.

The 2008 Ruby GUI Survey / 8

n %

Alone, for fun, interest or curiosity 185 78.1

Alone, on free/OS software 89 37.6

 In a company, on in-house tools 71 30.0

In a company, on free/OS software 27 11.4

 In a company, on commercial software 22 9.3

 Alone, on commercial software 21 8.9

All Ruby GUI developers 237 100.0

Table 4 : “In what situations have you used Ruby GUI toolkits?” (more than one response
permitted)

One conclusion that can be drawn from the above is that Ruby is not yet being widely used to
develop commercial desktop applications – but it probably didn't require a survey to conclude that.
It would be wrong to be pessimistic about the large numbers using Ruby for “fun”. Firstly, these
experimental uses may well eventually contribute to “real”, usable ideas; secondly, it's likely a
reflection of Ruby's inherent appeal as a language that it's something to be played with – it might
be harder to conceive of similar numbers using C++ to do GUI programming for fun.

As noted in the introduction, Ruby originates in the *nix environment; it has been argued, quite
persuasively, that ruby's support for Microsoft Windows has been less robust. Nonetheless, Windows
is the operating system upon which the largest number of Ruby GUI developers expect their
applications to run. Linux is a target platform for just over half the respondents; just over a third are
writing GUI apps for Apple's OS X.

n %

Windows 2000/XP/Vista 165 71.4

Linux 129 55.8

Mac OS X 84 36.4

Other (please specify) 10 4.3

Mobile / embedded 6 2.6

All GUI developers specifying platforms 231 100.0

Table 5 : "Which platforms do you develop Ruby GUI applications FOR?" (more than one
response permitted)

Respondents were also asked to name which operating systems they themselves used for
development. Here, Linux was the most commonly named (60%), with Windows in second place
(52%). A similar proportion are developing on OS X (35%) as are using it. The total reaches more
than 100% because many users are working on more than one platform.

The reference C-based ruby implementation of Ruby 1.8 remains the dominant platform for
development, being used by 97% of respondents. The use of other implementations is shown below,
with the development version of ruby, Ruby 1.9, being the most popular.

The 2008 Ruby GUI Survey / 9

n %

Ruby 1.9 54 22.9

JRuby 47 19.9

MacRuby 20 8.5

Rubinius 6 2.5

IronRuby 1 0.4

All responses 231 100.0

(Ruby 1.8) 228 96.6

Table 6 : "Which Ruby versions / types do you work with?" (more than one response
permitted; bar not shown for Ruby 1.8)

The survey did not ask in detail about editors and tools, as these have separately been the subject of
a recent survey2. Of specific interest, however, is whether GUI programmers make use of Rapid
Application Development (RAD) tools, which enable visual design of user interfaces, as opposed to
describing an interface solely in code. Pertinent examples mentioned by respondents include QT
Designer, XCode (for MacRuby/Cocoa), NetBeans (Swing), Glade (GTK) and DialogBlocks (for
WxWidgets). Overall 25% of Ruby GUI programmers used such tools. Others may not do so because
they find the tools inadequately integrated with Ruby, or because in general they do not find such
tools useful; this wasn't asked in the survey.

A noteworthy finding was the proportion of respondents who had experience of GUI programming in
other languages; 283 (71% of the whole sample) had used one or more other languages for GUI
development. Among them, the most familiar languages were C/C++ (known to 57% of those with
experience in other languages); Java (55%); VB (36%); C#/.net (34%) and Delphi (22%). Users were
less likely to report GUI experience with other scripting languages more similar in design to Ruby,
such as Perl, Python, Tcl or Lua; the most common among these was Python (16%).

8. Users' Requirements of a GUI Library
Respondents were asked to rate a set of seventeen general features and characteristics of libraries
for their importance in selecting a GUI toolkit. These questions about features in the abstract were
deliberately posed before any specific toolkits or libraries had been mentioned, partly to avoid any
distortion as a result of post hoc justification of a particular choice.

The characteristics which respondents rated covered both core technical features of the libraries
themselves, such as platforms and internationalisation, and characteristics more related to their
organisation as projects, such as documentation and support. The table below shows the ratings
given to the requirements. It shows both the proportion of respondents who rated the item as either
“very important” or “important”, and an average rating given to each option by scoring “very
important” as 5, “important” as 4, and so on, down to “not at all important” as 1.

2 http://www.tbray.org/ongoing/When/200x/2007/11/26/Ruby-Tool-Survey

The 2008 Ruby GUI Survey / 10

avg % “important” / “very important”

Ease of distributing applications 4.2 83.7

Web-based documentation 4.2 83.3

Availability for relevant platforms 4.3 79.8

Maturity / stability 3.9 71.3

Appearance / aesthetics 4.0 70.8

Licence compatible with open source use 4.0 70.5

API programming style 3.9 68.6

Ease of installation 3.8 66.5

Range of features / widgets 3.8 66.2

Community support 3.7 58.8

Speed / performance 3.5 54.1

Internationalisation support 3.5 52.5

Licence compatible with commercial use 3.2 41.2

Accessibility features 2.8 25.9

Availability of extra tools 2.7 23.2

Familiarity of toolkit other languages 2.5 17.2

Paper-based documentation 2.4 16.7

Table 7 : “Different Ruby GUI toolkits are sometimes said to have particular strengths and
weaknesses. Please rate the aspects below in terms of their importance to you in choosing
which GUI toolkits to use in Ruby.” (scale: “Very important” to “Not at all important”)

There are perhaps few surprises here, although the topmost item points to a particular problem that
Ruby, in common with other scripting languages, confronts: the need for an interpreter to be present
to run code. This presents problems if the application is to be distributed to ordinary, non-technical
end-users, for whom the process of installing an interpreter, the GUI libraries, other dependencies
and the application code itself, and then running it from the command-line may well be prohibitively
complex. Whilst tools exist to ameliorate this, other comments and answers suggest this has not
been overcome, particularly for commercial applications where the application code may need to be
obscured.

It's worth noting also that some of these requirements are more or less absolute – that is, if needed,
they either are or are not satisfied. Examples include licensing compatible with commercial
development and internationalisation support. If needed, they are very important, if not, they are of
little importance. In contrast, aspects such as maturity, API style and aesthetics are typically a
matter of degree and subjective judgement, and the distribution of responses reflected this.

9. Prevalence of Different Libraries
A central aim of the survey was to establish the degree to which the different libraries are actually
being used, and whether a clear favourite has emerged. Whilst this won't establish the “best” toolkit,
the degree to which longstanding libraries have been adopted reflects the degree to which
developers have found them fitted to a range of GUI development scenarios.

The 2008 Ruby GUI Survey / 11

For the most part, the options offered by the survey covered all the libraries in use by more than one
or two people. The main omission was VisualuRuby, which uses the Windows API to provide a
Windows-only GUI library. This project is little known or discussed in the English-speaking Ruby
world, but is actively maintained and was cited by around twenty developers, all but one of them
Japanese.

using now in future

n % n %

Shoes 45 23.8 70 37.0

Ruby-GNOME2 / GTK 41 21.7 51 27.0

wxRuby 34 18.0 48 25.4

Ruby-Tk 26 13.8 19 10.1

Ruby Cocoa / MacRuby 23 12.2 51 27.0

QtRuby 15 7.9 30 15.9

JRuby + Swing 14 7.4 41 21.7

FxRuby 14 7.4 21 11.1

JRuby + SWT 1 0.5 25 13.2

Respondents using any toolkit 189

Table 8 : “Which of the GUI toolkits do you currently use, and which do you think it's likely
you'll use in the future?” (more than one response permitted)

The numbers above clearly demonstrate that GUI library usage in Ruby remains highly fragmented.
The most widely used library, Shoes, is currently being used by less than one in four GUI developers.
They also suggest that this fragmentation is likely to persist. However, the strong showing of
relatively new options, such as JRuby + Swing, MacRuby and Shoes, and the relatively low usage of
long-established libraries such as FxRuby and Qt, are an indication that the situation is labile. It's a
poor showing for the “standard” Ruby library, Tk, it being the only one where fewer users expect to
use it in the future than are using it now.

n %

Ruby-GNOME2 / GTK 42 26.3

Shoes 41 25.6

wxRuby 27 16.9

Ruby Cocoa / MacRuby 17 10.6

JRuby + SWING 11 6.9

FxRuby 10 6.3

QtRuby 8 5.0

Ruby-Tk 4 2.5

JRuby + SWT 0 0.0

All specifying a listed preference 169 100.0

All naming any other preference 13

Table 9 : "Which, if any, would you describe as your PREFERRED toolkit?"

The 2008 Ruby GUI Survey / 12

Respondents were also asked which of the toolkits, if any, they preferred to use for GUI development.
The reason for asking this question was that current usage may be constrained by availability,
history or the need to maintain legacy code, but a single preference may better distinguish views on
the overall relative merits of the options.

As might be expected, patterns of preference broadly follow patterns of usage, and most of the same
comments apply. There was a very strong relationship between mother tongue and preferred toolkit.
Among Japanese Ruby developers, Ruby-GNOME2 was the preferred toolkit of an absolute majority;
among speakers of European languages, the same toolkit was less popular than Shoes and wxRuby.
This is almost certainly a reflection of the language of the lead developers of each of those toolkits:
Japanese for GNOME2, English for Shoes and wxRuby. If the lead developers speak the developer's
language, this is likely to furnish more documentation and timely community support in that
language. This is a nice example of the significance of non-technical factors in toolkit selection.

Users were also asked to rate every toolkit they had experience of as to how well it met their GUI
development requirements. Overall, users were not especially impressed with the options to hand;
MacRuby/Cocoa was the only one to receive an average rating above “Good”. Most other libraries
were rated, on average, between “Fair” and “Good”, in a similar ranking to overall preference. Below
them, FxRuby was rated just below “Fair”, and the lowest score was given to Tk, which was most
often rated “Poor”. This high rating of MacRuby along with anticipated future use suggests that it
has a promising outlook in its platform-specific niche.

10. Linking Requirements and Toolkit Choice
The survey did not ask respondents to rate each toolkit on how well they met all the different
requirements described in section 8.. For a start, this would have been tedious. More importantly,
given the time needed to explore and understand a GUI library enough to provide a meaningful
rating, it seems that very few programmers would be in a position to answer comparative questions
on specific features objectively.

Instead, to test whether the available GUI libraries are differentiated by meeting some requirements
better and others worse, statistical models were constructed. These models test how well
preferences for particular toolkits can be predicted from the stated abstract requirements of Ruby
GUI programmers. For example, does the fact that a respondent attaches a high importance to API
style, or a low importance to the range of widgets offered reliably predict that they are more likely to
prefer Shoes? If they can – in other words, valuing particular features leads users to select a certain
option – this would suggest that the fragmentation found results from the GUI toolkits fitting
certain niches better. It should also suggest which requirements lead users to prefer which library.

Modelling method

To understand the following, first note that they are models of binary choices – for example, “Prefer
wxRuby / don't prefer wxRuby”. A logistic regression model is constructed in each case; these
examine a set of factors and see how much, and in what direction they affect the probability of that

The 2008 Ruby GUI Survey / 13

binary choice being true. In this case, we're interested in whether a high or low importance being
attached to a particular requirement affects choosing a particular toolkit.

For the statistically minded, the model yields a coefficient – the strength of the relationship, and a
significance. The former shows how the factor affects the choice; the latter shows how likely it is
that the relationship observed is merely down to chance, or is in fact statistically significant. Four
models were constructed, for preferring Shoes, GNOME2, wxRuby and MacRuby/Cocoa – the tests
are most reliable if a reasonably large proportion of the sample makes each side of the binary choice.
The same set of independent variables was used for each model, consisting of all the general
requirements, plus variables for whether the user was or was not developing for Windows, Linux and
OS X.

Predicting a preference for Shoes
val sig

Extra tools -3.0 .002

Community support +3.7 .005

Maturity / stability -2.8 .016

Aesthetics +2.5 .055

Paper documentation +1.7 .067

Proportion of variance explained by model 25%

Table 10 : Factors significant at 90% level in model of Shoes preference

These salient features of the model for Shoes shows that those who prefer it place a high value on
the aesthetics, availability of community support and paper documentation relative to other GUI
users, and a low value on the maturity and extra tools of GUI toolkits. Note that it doesn't mean that
Shoes has better community support, or is immature and unstable – just that those requirements
are valued greatly and little respectively by Shoes users. Falling just outside the 90% significance
criterion, but also important, was a negative correlation between Shoes preference and a need for a
wide range of widgets, and a positive correlation with valuing the API programming style of a library.
This seems consistent with how Shoes is presented: a small library that's fun to use. This makes
Shoes a nice example of an open-source library fitting a niche within a broader field.

The other thing to note is the low “proportion of variance explained”. This is the amount to which
the decision to choose Shoes could be predicted from the factors in the model, against the amount
explained by other factors and random variation. This suggests that the reasons that some prefer
Shoes was not captured by the abstract technical requirements users were asked to rate. There are
various plausible explanations for this. One might be the excellent presentation and promotion of
the library, coupled with the fact that developers, having tried it, do not find it necessary to try other
options. Another might be that it is not intended to be a “GUI toolkit” in the traditional sense, and so
the concerns that dictate its usage are not the same as those that concern other GUI developers.

The 2008 Ruby GUI Survey / 14

Predicting a preference for Ruby-GNOME2
val sig

Developing for Linux +2.5 .000

Developing for OS X -2.2 .001

Commercial licence -1.8 .041

Platform availability -2.6 .055

Ease of installation +2.2 .060

Proportion of variance explained by model 35%

Table 11 : Factors significant at 90% level in model of Ruby-GNOME2 preference

Although Ruby-GNOME2 is notionally a cross-platform library, it does not appear that valuing cross-
platform development highly inclines people to prefer it. As might be expected, it has a strong base
among those developing for Linux. It's most interesting to compare this with wxRuby.

Predicting a preference for wxRuby
val sig

Developing for Linux +2.5 .000

Developing for OS X -2.2 .001

Commercial licence -2.2 .021

Ease of installation +2.0 .064

Platform availability -2.4 .067

Extra tools +1.7 .084

Accessibility -2.0 .088

Proportion of variance explained by model 34%

Table 12 : Factors significant at 90% level in model of wxRuby preference

What is striking here is the very high degree of similarity in the requirements that predict preferring
GNOME2 and those that predict wxRuby. These are two “big” toolkits, in the sense that they offer a
comprehensive set of GUI features, and are in common use in Ruby. The model results suggest that
they are both meeting similar requirements; rather than holding the niche occupied by Shoes and
Cocoa, they are largely overlapping products. Given that wxWidgets is well established for Windows
development, it's perhaps surprising this doesn't come us a significant predictor for wxRuby.

Predicting a preference for MacRuby / Cocoa
val sig

Developing for OS X +6.1 .002

Developing for Windows -3.3 .015

Accessibility +9.3 .043

Commercial licence +4.5 .058

Ease of installation -5.5 .060

Proportion of variance explained by model 67%

Table 13 : Factors significant at 90% level in model of MacRuby / Cocoa preference

The 2008 Ruby GUI Survey / 15

The predictors of preference for the fourth most popular toolkit go some way to explaining the
preferences for the others. Those who use MacRuby / Cocoa are of course, interested in developing
for the OS X platform; the negative correlations between developing for OS X and preference for
GNOME2 and wxRuby suggests that Cocoa is already becoming a preferred option for those
targetting Apple's platform. Worth noting here is that an interest in developing commercial apps
predicts a preference for Cocoa – it may be that, with MacRuby, Apple has begun to provide an
attractive platform for commercial desktop application development in Ruby where the other GUI
toolkits have not.

11. Views of the Future
The last sections of the survey asked respondents about the future of Ruby as a GUI development
language: what are the biggest obstacles, and whether things are moving in the right direction.
Before looking at those answers, it's useful to look at the reasons that some Ruby programmers are
not doing GUI work.

Reasons for not doing GUI development in Ruby

As noted above, around a third of the sample had never used Ruby for GUI development. As these
users presumably enjoy using Ruby to some degree, the reasons that they choose not to use it for
this type of programming are of particular interest. For some, the reasons are benign – simply lack of
time to explore this application of the language: “am interested, but never took the time to actually
do it”. Other responses are important in understanding Ruby's shortcomings in this area.

n %

No GUI toolkit meets my requirements 59 49.2

Prefer to develop UIs through web or rich media 36 30.0

Development tools are better for other languages 29 24.2

Not interested in GUI programming at all 28 23.3

No way to protect an application's source code 15 12.5

Already happy with another language 9 7.5

Ruby's performance is too slow 7 5.8

Ruby is the wrong kind of language 2 1.7

All GUI non-users specifying reasons 120

Number making additional comment 23

Table 14 : “Which of the following reasons explain why you don't use Ruby for GUI
programming? Please choose as many as are relevant.”

The most common reason is not an insurmountable objection to using Ruby for GUI development,
but dissatisfaction with the currently available libraries. As one respondent succinctly put it in the
comments, “every GUI library I've tried has sucked”. Several users suggested that libraries which are
ports from other languages are poorly integrated with Ruby's features: “Too difficult to write the
code (writes like java, runs like ruby... where's the upside?)”.

Whether, when and where web-based client/server applications are equal or preferable to desktop
applications is an open debate. Ruby's popularity is in no small part due to its web frameworks such

The 2008 Ruby GUI Survey / 16

as Rails, and so it's to be expected that a fair number of non-GUI developers prefer this medium.
More important, from the point of view of the GUI library developers, is the number who are put off
GUI development by the lack or shortcomings of development tools.

Obstacles …

Those with experience of GUI programming in Ruby were similarly asked what they thought most
impeded this use of the language. Their answers tell of the real obstacles encountered by those
who've tried one or more of the available options:

n %

Maturity of toolkits 76 25.8

Difficulty of distributing applications 66 22.4

Quality of documentation and learning materials 64 21.7

Availability of RAD / design tools 43 14.6

Ruby interpreters' speed / performance 26 8.8

Prejudice against certain platforms or vendors 20 6.8

All GUI users specifying an obstacle 295

Number making additional comment 21

Table 15 : “Which of the following do you think most impedes the use of Ruby for GUI
programming?” (one answer only permitted)

The commonest reason, already suggested by the low average ratings given to most toolkits, is that
the toolkits are just not yet sufficiently developed to be comfortable to use. More work will be
needed on the libraries themselves, and also their documentation to advance this domain of Ruby
development.

A problem specific to Ruby picked up here is the difficultly of distributing applications to potential
users. In compiled languages like C and C++, a compiled binary provides a natural way of providing
applications to end users. They are immediately usable, fast, reliable, well integrated with the system,
and secure against at least casual attempts to discern the source code. There are ways for different
ruby implementations to turn interpreted code into a standalone runnable binary that can be
distributed – perhaps the best known for the reference interpreter is RubyScript2Exe. However it's
clear that the problem is not yet fully addressed.

Numerous write-in comments suggested that some current and potential GUI developers are
deterred by the lack of a standardised library for this purpose: “It would be nice to have a modern,
simple but complete GUI toolkit as part of Ruby. It's the one thing all the modern scripting
languages lack, except TCL/TK”. The survey specifically asked whether Ruby ought to include a GUI
library as part of the standard distribution. 23% said that it should, 35% said that it shouldn't, but
the largest number, 42%, didn't know.

… and optimism

To end the results on a cheery note, respondents were asked their opinion of how Ruby was
improving as a platform for GUI work. A large majority think that things are improving, even if most
of those think that it's not doing so at a blazing pace:

The 2008 Ruby GUI Survey / 17

n %

Improving quickly 54 18.0

Improving slowly 177 59.0

Staying about the same 65 21.7

Getting worse 4 1.3

All GUI users responding 300

Table 16 : “What direction do you think that the quality of Ruby for GUI development is
going in? Please judge this relative to other options that you're aware of.”

12. Commentary
The preceding has attempted to provide a fairly neutral description of the survey and its context.
This last section is more opinionated; it tries to distil what the survey shows about Ruby, GUI
development and open source more generally.

Ruby is potentially a great language for GUI programming. Its sophisticated and well-integrated
treatment of anonymous functions and closures is well suited to event-driven programming:
handlers for UI events can be defined tersely and with access to whatever contextual information is
needed. Ruby offers a thorough and flexible object model; GUI libraries tend to utilise deep and
complex class relationships to represent the behaviour of UI objects. UI development, with a
multitude of paths through code driven by unpredictable user actions tends to mean a lot of iterative
development; Ruby, as an interpreted language, means that changes can be tested nearly
instantaneously. As discussed further below, Ruby 1.9 offers important improvements in the core
library that are relevant to GUI development.

Given all that, it's in a way disappointing that the survey results suggest that Ruby is not yet an ideal
platform for GUI development. Many respondents are not using GUI libraries for Ruby because they
are not convinced of their merits. Whilst some of those who are doing GUI programming like their
tools, others have reservations, some of them serious.

The costs of fragmentation

“I think there are enough GUI libraries already. (Just not for my purpose.)”.

The survey findings show that the pattern of usage of different libraries is still highly fragmented.
The most widely used toolkits are employed by around a quarter of all GUI developers. A lot of them,
including the reference Ruby interpreter's standard toolkit, Tk, are used by fewer. Competition and
differentiation among are often regarded as characteristics of healthy “markets”: potential users are
thus able to make rational choices amongst available products, selecting whichever best meets their
particular needs. The reality falls rather short of this ideal, for several reasons. Firstly, there's a high
cost in time needed to properly assess the available options as to how well they meet requirements.
Secondly, it seems that the more comprehensive “big” toolkits are not much differentiated by their
features. And, thirdly, the libraries available are falling somewhat short of users' expectations.

Overall, it's probably fair to say that Ruby's GUI toolkits are not blazing ahead. The ports of the “big”
cross-platform C/C++ toolkits (GNOME2, Qt, Wx) are at the moment more or less keeping up with

The 2008 Ruby GUI Survey / 18

the base libraries, but are not yet really exploring how a really “Rubyish” toolkit might work. The
smaller, more lightweight toolkits (Tk, Fox) are stable and comfortable to use, but their inherent
aesthetic limitations mean they're not really viable for general-purpose end-user applications.
Newer implementations of Ruby (JRuby, MacRuby) may offer new and interesting possibilities, but
are limited by the acceptability and availability of their base platforms. And whilst Shoes is probably
the most well fitted to Ruby's paradigm, it is not, and has never set out to be, a general purpose
desktop application development toolkit.

From one perspective it's a missed opportunity that Shoes was implemented from scratch in C, rather
than as a layer atop an existing cross-platform library like QtRuby or wxRuby. These already offered
cross-platform widgets and event handling, and lower-level cross-platform drawing primitives
capable of doing everything that Shoes does. The attractions of Shoes are clear and confirmed by
the survey: an attractive, fun, Ruby-ish API for graphical applications. However providing this on top
of an existing library would have had benefits all round: to Shoes (an easier and more extensible,
pure-Ruby implementation), to the base library (refinement and testing), and most importantly to
end users (being able to drop down to a more comprehensive library when the limits of the Shoes
API is reached, rather than being caught in a gilded cage).

From a more authentic perspective – its own – Shoes is successful, and its popularity is confirmed by
the survey. The plaintive preceding paragraph in fact from stems from the way that the purported
benefits of open source have only rarely been realised in the field of Ruby GUI development. To be
specific, the exchange of code and ideas between the different Ruby libraries has so far been quite
limited. This is largely because, with there being limited resources scattered over many projects, each
project's effort has been primarily consumed by dealing with the technicalities of the interface
between Ruby and the lower-level functionality being ported. This effort is relatively non-portable,
and has been at the expense of more exchangeable work on topics of common concern: the
development of API models for Ruby GUI programming, usability, and innovation in interaction
design. In this regard, Shoes is a singularly valuable and important experiment.

To return to the quotation above: developers do not want many options, they want good ones.
Various reasons have been suggested why Ruby, according to this research, has not yet wholly
delivered this for GUI development. The high degree of fragmentation in Ruby GUI options has not,
it seems, particularly served the needs of potential GUI developers, but it's not possible to speculate
whether that fragmentation will continue, reduce or increase.

The importance of Ruby 1.9

“Native Threads. That's all I have to say about that.”

The recent release of a new major version of Ruby, Ruby 1.9, merits comment. Several of the most
salient features of this release are likely to be of particular benefit to GUI development in the
language. The most remarked change is improved speed relative to Ruby 1.8. As interpreter
performance is directly observable by users of a desktop application, increased speed is definitely
welcome. The speed improvements are however evolutionary rather than revolutionary, and are less
interesting than other developments. For example, Ruby 1.9 offers more sophisticated handling of

The 2008 Ruby GUI Survey / 19

string encoding, valuable for applications which work with multilingual text or which need to be
localised.

From the point of view of GUI development, the most important single change is the availability of
system-level threaded programming in Ruby 1.9. Desktop applications frequently need to execute
some long-running task (for example, downloading a file) whilst still allowing user interaction with
the GUI. With Ruby 1.8's threads, implemented at the interpreter level, achieving this was frequently
difficult; from early experience, Ruby 1.9 is a great improvement.

Ruby 1.9 also steps along the path to a (byte-)compilable system, which potentially can support
easier and more secured redistribution of Ruby code as runnable applications to end users. As the
survey found, the difficulty of redistributing applications is an obstacle for more than a few GUI
developers: “For proprietary application, wrapping scripts in .exe file (as exerb/rubyscript2exe) is
not enough”. At present the default Ruby 1.9 doesn't allow running from compiled instruction
sequences; hopefully this survey demonstrates to core Ruby developers the importance of this
feature to GUI development and look to implement it fully and enable it upcoming 1.9 releases.

Tk, and the Ruby standard library

Having discussed what might be added to Ruby 1.9, let's consider what ought to be removed. The
survey shows that it's well past time that the standard distribution of Ruby dropped Tk. Despite
being bundled with the most widespread implementation of Ruby, the survey shows it's not widely
used, and is held in very poor regard by GUI programmers. There's no reason that Tk can't continue
to exist, like all the other GUI libraries, as an independent project, installable as a gem or by other
means. There's also absolutely no reason that the limited resources of the core Ruby development
team should be committed to maintaining it in the standard library.

Unlike some recondite but benign parts of Ruby 1.8's standard library (for example abbrev.rb) Tk
being included has very real negative consequences. It makes porting (for example, to 64 bit
systems), and installation more complex, and may lead end users who have no intention of ever
using Tk to configure their installation in a way that is otherwise sub-optimal; for example,
configuring with –enable-pthreads is recommended for Tk, but may otherwise significantly reduce
interpreter performance.

Of those with an opinion, a majority do not want any GUI library bundled with the standard
distribution of the C-based interpreter. Among those that do want that, there is no consensus as to
which library should be included, and most options are anyway technically unattractive for
integration into the standard library. In the free-text comments, some respondents indicated that
they do want a clear-cut preferred GUI library choice, but it seems better that this should happen
through competition between independent projects, and research like this, rather than a choice by
the core team. Similar debates have taken place with Python 3.0, and bundling a GUI library has
been rejected for similar reasons.

The 2008 Ruby GUI Survey / 20

Things change quickly

Lastly, the widespread adoption and preference found for novel options such as Shoes, and, to a
lesser degree, MacRuby and JRuby + Swing should be taken as encouraging signs about Ruby and
about open source more generally. The Ruby GUI field, as with others, is being constantly refreshed
by people starting anew, as well as by seasoned developers experimenting and playing. The open
source model is fundamental to enabling this exploration and play, and this, in tandem with Ruby's
inherent merits, bodes well for the future of desktop development with Ruby.

13. Etc.

Acknowledgements

Thanks are due to all the Ruby programmers who completed the survey, especially those who did so
in a second language. I'm grateful also to those who commented on earlier drafts of the survey, and
to those who publicised it in various channels.

About the author

I'm a sociologist, anthropologist, and occasional Ruby programmer. My day job is as Research
Associate in the Department of Land Economy at the University of Cambridge, UK, where I do
research and teaching on housing, neighbourhood deprivation and urban policy. I designed and
developed Weft QDA3, a desktop tool for qualitative data analysis in the social sciences, written in
Ruby. I'm also the lead developer and maintainer of wxRuby.

3 http://www.pressure.to/qda/

	1. Summary of Findings
	2. Overview
	3. Background: Ruby and GUI programming
	4. Objectives of the Study
	5. The Survey Method
	6. Characteristics of the Sample
	7. Context of Ruby GUI Programming
	8. Users' Requirements of a GUI Library
	9. Prevalence of Different Libraries
	10. Linking Requirements and Toolkit Choice
	11. Views of the Future
	12. Commentary
	13. Etc.

